Radiation Protection

Radiation Protection Safeguards in Industrial Processes

- All industrial processes pose safety hazards (mechanical, electrical, chemical, biological)
- Radiation Processing also poses safety hazards
 - Radiation exposure of workers
 - Electrical (high-voltage equipment, particularly with accelerators)
 - Mechanical (conveyor belts, devices to move and rearrange packages)
 - Biological (rarely, contamination levels generally low)

Radiation Protection The ALARA Principle

ALARA: <u>As Low As Reasonably A</u>chievable

- Provide sufficient shielding to reduce dose to personnel to negligible levels
- Administrative procedures for safe operation of radiation equipment
- Fail-safe interlocks to prevent accidental exposure

Radiation Protection General Safety Rules

- No entry into a controlled radiation area unless wearing a dosimeter, e.g., film badge
- Equipment should not be used if safety devices are not working
- Only one operator of the radiation equipment at any given time

Radiation Protection General Safety Rules (contd)

- Operation of radiation equipment only by persons qualified to operate it
- All equipment malfunctions, even if minor or temporary, should be reported
- Every person has the responsibility to shut down radiation equipment if suspected that personnel are in danger

Radiation Protection Effects of Human Exposure

- <0.5 Gy No visible short-term effects
 - 0.5 Gy Increase in white cell count
- 0.5-2 Gy Increase in white cell count, nausea, fatigue
- 2-4 Gy Headache, nausea, fever, fatigue, chills, loss of appetite, loss of hair
- 4-5 Gy Can be lethal ($LD_{50} \sim 4.5$ Gy)
- 6.5-8 Gy Death in <22 days
- 8-10 Gy Immediate death

Radiation Protection

Radiation Exposure of Humans Undesirable

- Extremely important control the dose received by personnel
- Shielding a controlling primary step in protection against such exposure

Radiation Protection ICRP Recommended Dose Limits^{1,2}

	Dose Limit	
Application	Occupational	Public
Effective dose	20 mSv per yr averaged over defined periods of 5 yrs	1 mSv in a yr
Annual equivalent dose		
in the lens of the eye	150 mSv	15 mSv
in the skin	500 mSv	50 mSv
in the hands and feet	500 mSv	-

¹ ICRP Publication 60 (1990)

² For e⁻ and γ , 1 Sv = 1 Gy

Radiation Protection

Use of Radiation Monitors

- Personnel Monitors TLD or film Pocket ion chamber
- Area Monitors With audible alarms able to shut down radiation source
- Geiger-Müller counter For routine surveys to detect radiation

(IAEA Technical Report No. 188)

Animal	LD ₅₀ (kGy)	
Dog	3.5	
Guinea Pig	4.0	
Human	2.5 to 4.5 ^b	
Mouse	5.5	
Monkey	6.0	
Chicken	6.0	
Frog	7.0	
Rat	7.5	
Rabbit	8.0	
Tortoise	15.0	
Goldfish	23.0	

^a Casarett (1968)
^b The accepted value is 4.5 Gy

Conclusions

- Radiation protection of workers at a radiation processing facility is extremely important
- The overall cost of radiation protection is a small part of the cost of radiation processing
- While most radiation processing facilities have a person in charge of radiation protection, everyone there should be well aware of the need and the details of radiation protection measures